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A statistical mechanical theory is presented for the self-organization of a 
macroscopic oscillation with the presence of external fluctuations in a system of 
Van der Pol oscillators coupled through dissipative interactions. Starting from 
Langevin equations for the Van der Pol oscillators, the static and dynamic 
characteristics are studied. The threshold condition is given by the relative size 
between the fluctuation and the interaction. The transitions between synchro- 
nous and asynchronous phases are well discussed by a Landau-type equation. 
The steady state value of the order parameter and the onset time are compared 
between the theory and the computer experiments and a good agreement is 
obtained. 
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1. INTRODUCTION 

The organization of the temporal order, the temporal organization, is one of 
the fundamental characteristics of a system far from thermal equilib- 
rium} 1'2) In addition, the temporal order is more or less involved in a 
number of life phenomena. C2-5) Statistical mechanical studies for under- 
standing the essential physics of the temporal organization will be impor- 
tant not only for statistical physics but also for various fields of biology. 
For the temporal organization in a statistical system, firstly, elementary 
oscillations must be present at the microscopic level, and secondly, such 
elementary oscillations must reach a temporal coherency. The resultant 
oscillation in a nonconservative system is known to be of the limit cycle 
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type. The basic mechanism for producing the temporal coherency is what is 
called the entrainment or synchronization which is known as one of the 
characteristics of nonlinear oscillations. 

Temporal organization can be classified into two according to the 
mechanism of the entrainment: self-synchronization and forced synchroni- 
zation. In the former the synchronization spontaneously appears in a 
macroscopic system as a result of mutual interactions among elementary 
oscillators while the latter is derived from an external oscillation which may 
be linear or nonlinear. The self-synchronization will be very important in 
the formation of macroscopic rhythms in nature and is a good subject for 
statistical physics. Beating cardiac cell clusters, (6) glycolitic oscillations in 
yeast cell suspensions or in mitochondria, (4'7'8) and mitosis in Physarum (7) 
are well-known examples of self-synchronization where the elementary 
oscillators are actually identifiable. As examples of the self-synchron- 
ization in a continuous macroscopic system, we have the chemical oscilla- 
tion in the Belousov-Zhabotinsky reaction, (9~ the rhythmic contraction in 
Physarum plasmodium,(l~ and so on. In regard to the forced synchroniza- 
tion, the synchronization of circadian rhythms to a periodic change of light 
intensity is an important example in the field of chronological biology. (5~ 
Another interesting example can be seen in the forced synchronization in 
chemical oscillation, which has been studied extensively by Tomita's group 
from a theoretical point of view ( ~ 0 : various aspects of oscillations, not only 
synchronizations but also chaotic behaviors. 

Self-synchronization was studied theoretically by Wiener (~2~ in terms 
of the Wiener kernel, and the entrained spectrum of brain waves was 
derived by giving some specific characters to lower-order kernels. However, 
it is generally hard to relate Wiener kernels to statistical properties of the 
system to be derived from fundamental equations, for instance, equations 
of motion for elementary oscillators. In the place of Wiener kernels, 
Winfree introduced more tractable quantities such as a sensitivity function 
which was empirically introduced to give the response of the system, a shift 
in the frequencies of the oscillators, to a periodic stimulus. (13) He suc- 
ceeded in showing the presence of a "threshold condition" for the self- 
synchronization of weakly interacting nonlinear oscillators with respect to 
the distribution of their frequencies. Phase-transition-like phenomena in 
self-synchronization were studied by Kuramoto, starting from kinetic equa- 
tions derived for a reaction-diffusion system. O4) The threshold condition 
was given in terms of the relative size between the width of the frequency 
distribution and the magnitude of mutual interactions among the elemen- 
tary oscillators. Details of the mutually entrained state and its process were 
clarified by Aizawa by means of computer simulations for interacting Van 
der Pol oscillators. (~5) He also gave an explanation for properties of 
synchronization by utilizing a mean field approximation. 
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Elementary oscillations, which are generally of microscopic level in the 
system, are influenced, more or less, by the fluctuation. Hence, in addition 
to the entraining force, the temporal organization is governed by the 
fluctuation force. What is to be studied extensively in statistical physics on 
the temporal organization will be the influence of these two kinds of forces. 
In the case of forced synchronization, theoretical studies are comparatively 
advanced, ~16) in particular, in the field of radio communications. The 
synchronization of a single nonlinear oscillator to an external oscillation in 
the presence of a fluctuating force was studied by Stratonovich. ~17) In the 
case of self-synchronization in a statistical system, theoretical treatment will 
become more complex than in the case of forced synchronization since an 
N-body treatment is essentially required because of the cooperative behav- 
ior of elementary oscillators. General theory has not been published yet for 
the self-synchronization with random forces so far as the authors know, 
and little is known about the general properties in spite of their significance 
in various fields. 

In the present paper, starting from coupled Langevin equations, we 
will treat the self-synchronization under the influence of external fluctua- 
tions in a system of Van der Pol oscillators interacting through dissipative 
coupling. In the next section, Langevin equations for Van der Pol oscilla- 
tors as basic equations are coarse grained by means of the multi-time-scale 
method of Kawasaki (18) applied for the Fokker-Planck equation. The 
resultant equations, similar to rotating Van der Pol equations, are rewritten 
in terms of microscopic and macroscopic quantities in Section 3, which are 
treated by the consistent equation method by Kometani and Shimizu for 
two hierarchical systems. (19) In Section 4, a threshold is derived for the 
self-synchronization with respect to the relative size between the fluctuation 
and the interaction. In Section 5, a Landau-type equation is derived for the 
evolution of the order parameter, and the threshold condition for the 
self-synchronization derived from this equation coincides with that derived 
in Section 4. The process of the temporal organization of a macroscopic 
oscillation is studied in Section 5 by means of the dynamical scaling theory 
of Suzuki. (2~ Section 6 is devoted to a comparison of the results of our 
theory and those of computer experiments. Good agreement is obtained. 
The conclusions made from our study are discussed in the last section in 
connection with other theories. 

2. COARSE GRAIN ING OF BASIC EQUATIONS 

The system we will study here is a N-body one composed of identical 
Van der Pol oscillators each of which is under a Gaussian white noise and 
interacts with the others through a dissipative interaction. The equation of 
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motion for the ith oscillator is given by 

Xi "~ O)2Xi- E~163 - -  ~X2)Xi ~'bo~ N ~ ] ( x J -  xi) =f . ( t )  (1) 
J 

where the angular frequency w0 is common to the all oscillators, eo~0~ with 
the smallness parameter ~ gives the nonlinearity to the oscillation, and fl is 
linked to the amplitude a 0 of the oscillation in the absence of the interac- 
tion and the random force by the relation fl = 4 / a  2. The dissipative 
interaction represented by the last term on the left-hand side (lhs) of Eq. (1) 
is assumed to be caused by some friction of which the strength is given by 
eo~oR/N with R 1> 0. This is equivalent to a mean-field-like interaction with 
the magnitude e~oR. The random force f . ( t )  on the right-hand side (rhs) is 
of external origin and will be assumed to be a Gaussian white as follows: 

( f ( t ) )  = O, ( f i ( t ) f j ( t ' ) )  = 2eo~4080d(t - t') (2) 

where ( . . .  ~ denotes the ensemble average with respect to the random 
variable f i ( t )  and Eco4D is the corresponding diffusion coefficient, respec- 
tively. 

Equation (1) can be rewritten as two first-order differential equations: 

3~ i = 19 i 
(3) 

eo~0R 
13; = - ~ 2 x '  + 'r176176 - ~x2)'i § T Z(1)j  -- 13i) § fi( t)  

J 

which give 2N Langevin equations for the variables ( x  i, vi). The Fokker- 
Planck equation for the probability density function P({ xi) ,  (v i) ,  t) can be 
obtained from Eq. (3) as follows: 

~t  P (  { xi) ,  { v i ) , t  ) = H P (  { xi} , { v i } , l  ) (4a) 

where the Fokker-Planck operator H can be separated into two parts 
according to the order of c: 

H = H o + e H  l (4b) 

with 

and 

H l = ~  - ~ ~oo~(1-flx~)v~+ 2 ( v j - v ~ )  + o - -  (4d) 
-T 
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In Eqs. (4a)-(4c), H o gives the rapidly varying component which evolves 
with the time scale o~ 0-1, that corresponds to a harmonic oscillation, and H 1 
gives the slowly varying component with the time scale (c~00)-1 caused by 
the nonlinearity, the interaction, and the external fluctuation. 

A dynamical system may be conveniently broken down into a series of 
hierarchical subsystems from the rate of the time evolution: the time scales 
characterizing two successive hierarchical subsystems are different from 
each other by a factor, c. For instance, the dynamics of the fastest rate, the 
harmonic oscillation, is described in terms of the time scale %. The rate of 
the evolution of the next time scale z 1 is smaller by a factor E than that of 
the fastest change. The synchronization process will be this kind of dynam- 
ics, as is clear from Eqs. (4a)-(4d). Because of such breaking down, the 
time t governing the evolution of the whole system may be regarded as a 
function of independent variables {ri), or 

27 = = (Sa) 

Now, let us expand the probability distribution function P(t) into a 
series in terms of E: 

e ( t )  = + + + . . .  ( S b )  

It should be noted that this expansion does not correspond to the breaking 
down of the time evolution of the system into hierarchical subsystems, but 
each term Pj({~-i}) includes information on the dynamics of different 
hierarchical classes. The smallness parameter c plays the role of the 
"weight" of information contained in each term Pj({zi)) within P(t). Thus, 
when c is very small, most of the information on the time evolution of the 
system will be condensed in the first term P0((zi))on the rhs. 

Substituting Eqs. (5a) and (5b) into Eq. (4a), and then balancing both 
sides of the resulting equation with respect to ~, we obtain 

0 Po = HoPo (6a) 

and 

0 _ Hl)P  ~ (6b) 

Equation (6a) denotes the time evolution of N "harmonic" oscillators, when 
the mutual interaction and the fluctuations are absent. So the equation 
describes deterministic motions. The operator H 1 representing the effects of 
the nonlinearity, the interaction, and the fluctuation is found in Eq. (6b), 
which means that information on the self-synchronization under external 



724 Yamaguchi, Kometani, and Shimizu 

fluctuations exists in the probability density function P0 and P~. Equations 
(6a) and (6b) can be solved formally as 

P0(% - s, "rl) = e -sH~ "rl) (7a) 

and 

;o [ ] Pl('ro,'rl) = ~~176 H,  Po('r o -  s,'r,) - -~l  Po( 'ro-  s,'r]) (7b) 

Substituting Eq. (7a) into (7b), we obtain 

_ 0 )po(.ro,.r,) (8a) Pl('ro,,rl) = ~-0(H~ 0 

with 

H,{o ~ To l fo~Ods eSnoHle-sno (8b) 

In Eq. (8a) we take a limit %--> oo, keeping the time scale $1 unchanged. 
The physical meaning of this procedure is as follows. Firstly, it leads to 
e =  " r l / % ~ 0 ,  which shows that information concerning the self- 
synchronization process is exclusively condensed in P0. Secondly, the 
harmonic oscillations in the time scale % are excluded and we can pay 
attention only to the dynamics in the time scale ~'1. Assuming that P0(%, "q) 
converges to a finite value, we obtain from Eqs. (8a) and (8b) 

0 fio(r HiPo(~.l) (9a) 

with 

H 1 = lim H~ ~ (9b) 
TO--) OO 

The operator H I may be interpreted as a coarse-grained stochastic operator 
of H~ in regard to the rapidly varying motion, and it gives the probability 
density function F 0 for the slowly varying motion. 

To obtain the exact expression of Hi ,  one must first calculate the term 
eSHoHle -sH~ which can be expressed in terms of products of quantities, 
qo( -  s) .~ eSH~176 On the other hand, qo( -  s) is obtained by solving the 
equation of motion for a variable, q, 

= [q, Ho] (10) 

where [, ] denotes the commutator. This equation gives the evolution of the 
quantity q in the absence of the nonlinearity and the fluctuation. For 
instance, for q = x i and % 

Yci = vi (11) 

0 i = _ o~2xi 
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from which one obtains 

Xio (--S) = a/cos(-  (do S + (~i) 

1.) i 
= xicos (do s - - -  sin(doS (12a) 

(d o 

rio( - s) = - ai(dosin ( - (do s + q~i) 

= xi(dosin (do s + v/cos (do s (12b) 
with 

ai = [ x~ + (vi/(do)Z] 1/2 (13a) 

e), = - tan-  ~( vi/(doXi) (13b) 

Clearly, (Xio), { Vio ) represent harmonic oscillations. Similarly, one finds 

eSUo~--~-e-Sno = sin(d~ �9 ~ + cosc0os �9 ~ (14) av, (do ~xi ~vi 

By substituting Eqs. (12a), (12b), and (14) into Eq. (8b) and by taking the 
limit ~-o ~ oo, the explicit form of H 1 is found as follows: 

I -  

2N ~j -~yi (yj - y') + -~x~ (xi - x') (15) 

where Yi = vi/wo. Langevin equations for the slowly varying motions of 
(xi) and (Yi)can be derived from this Fokker-Planck operator: 

2 i = ~ x  ~ 1 -  (x~+y?)  + - ~ - - ~ ( x j - x i ) + g ~ i ( t  ) (16a) 
.1 

. f ; i=~Yi I--  Xi2Jt'y 2) + ~ - - ~ . ( y j - Y i ) + g y i ( t )  ( 1 6 b )  
J 

where the random force gzi(t) with z = x, y is characterized as 

(gzi(t)) = O, (gzi(t)gzT(t')> = Dt3zz,6ij6(t - t') (17) 

Equations (16a) and (16b) describe motions of the oscillators where the 
component of harmonic oscillations is excluded from the basic equations. 
In other words, it gives the motions of "rotating Van der Pol oscillators 
with the interaction and the fluctuation. Therefore, it can be conveniently 
considered that Eqs. (16a) and (16b) represent the motion of Eq. (1) 
observed on a coordinate rotating with the angular frequency (d0. It should 
be noted that, in Eqs. (16) and (17) and hereafter, the time scale is denoted 
by (d@'l, while in Eq. (15) it is denoted by ~l. 
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3. SEPARATION OF MICRO- AND MACROSCOPIC QUANTITIES 

In this section we will derive a set of equations describing the process 
of self-synchronization. The equations are one for the time evolution of the 
order parameter and ones for the change of internal fluctuations around 
the order parameter. These hierarchical subsystems, the order parameter 
and internal fluctuations, are linked to each other by means of a feedback 
loop of interactions, which can be described by a set of consistent equa- 
tions as shown by Kometani and Shimizu. (19) 

The stochastic variables xi(t ) and yi(t) can be expressed as 

x , ( t )  = x(t)  + 
(18) 

yi ( t )  "~- Y ( t )  -~. l~i(t ) 

where X(t) and Y(t) are macroscopic variables, which may be taken for a 
large N as follows: 

N N 

1 1 ~ ) , i ( t )  (19) x ( t )  = x,(t)  a n d  = i = 1  
i = 1  

and ,~i(t) and 7/j(t) are microscopic variables, fluctuating deviations from 
the "macroscopic oscillations" represented in terms of X(t) and Y(t). 

We may assume that at the initial time t = 0, N oscillators are 
uniformly distributed in their phases. Then, it will be reasonable to assume 
that during the time course of the synchronization the statistical distribu- 
tion of the microscopic oscillations is symmetric with respect to the phase 
G 0 in the following sense. That is, the oscillators give rise to synchronized 
oscillation with the phase angle 090, keeping the phase distribution symmet- 
ric around 09o. The assumption of this symmetric distribution in the phase 
may be accepted without loss of generality. Hence, 

1 ~ a,(t) sinAq~,.(t) ----- 0 (20a) Y(t) = N 

and 

1 ~ ai(t ) COS m~)i(t ) (20b) x ( t )  = 

where Aq~i(t)= ePi(t ) -d9 o. Though the macroscopic oscillation is denoted 
in terms of the variables X(t) and Y(t), the use of the condition (20a) for 
the symmetric phase distribution can reduce the number of the variables, 
leaving only X(t) as a macroscopic variable. The assumption of '  the 
uniform phase distribution of the oscillators at t = 0 may be written as 
X(0) = 0. In the completely synchronized state, we have ~ = 090, leading to 
X(t) = (1 /N)~ai ( t )  =-- A (t) and X(t) has the maximum value. These situa- 
tions allow us to use X(t)  as the order parameter representing the degree of 
self-synchronization. 
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From Eqs. (18) and (20), we have 

xi(t) = x ( 0  + ~;(t) (21a) 

y, (  t) = ~li( t) (21b) 

Substituting Eqs. (21a) and (21b) into Eq. (16a) and then taking the average 
of the resulting equations with regard to i, we obtain the evolution equation 
for the order parameter X(t): 

2 = ~- oy) X -  y + G(t)  (22) 

where 

and 

Ox(t ) =--~i2(t)/N, oy(t) =--~12(t)/N (23a) 
i i 

( G ( t ) )  = O, ( G ( t ) G ( t ' ) )  = D 6 ( t -  t') (23b) 

Subtracting Eq. (22) from Eq. (16a), we obtain 

B~ [3(~2_ .x)X + ( ~ -  o~)x + ~3 + ~0~] + Fx(t) 
8 

=-- Ux(~,71,X ) + Fx(t)  (24a) 

and 

+ + 

--= Uy(~,~,X) + Fy(t) (24b) 

where the suffix i is omitted for simplicity's sake, and 

(Fz ( t ) )  = O, (Fzi(t)FzT( t,)) = Dz6~z,80.d(t - t') (25) 

with D x = D(1 + O ( N - 1 ) )  and Dy = D. 
The evolution equation of the entire system is described in terms of a 

set of closed equations, (22) and (24a) and (24b). The interactions between 
different hierarcJ" ""al subsystems are included in equations for both micro- 
scopic and macroscopic variables, as is seen in these equations. 

4. C O N D I T I O N S  FOR S E L F - S Y N C H R O N I Z A T I O N  

The feedback interaction between the macroscopic and microscopic 
systems causes a mathematical difficulty in consistently solving Eqs. (22) 
and (24a) and (24b). However, when the microscopic variables rapidly vary 
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where 

and follow the macroscopic variable X, the system will always be in local 
equilibrium. A necessary condition for the validity of the local equilibrium 
is that the damping constants for the evolution of the microscopic variables 
have the positive sign. Hence, from Eqs. (24a) and (24b), 

~ - R - 3 f i xX  2 ( O and x - R - �88 f lKX 2 ( O 

Thus, the condition R > x must hold for the local equilibrium, regardless 
of the value of X 2. Under the local equilibrium, the feedback loop can be 
decoupled and the equations become tractable. In the next order approxi- 
mation the statistical distribution of the variables ~(t) and ,/(t) is dose to 
but a little different from the local distribution under X ( t ) .  By adopting 
Kometani and Shimizu's scheme we can classify the evolution of the 
microscopic variables into two parts, the relaxation toward local equilib- 
rium and the dynamical coupling with the evolution of X ( t ) .  

Let the time scales for X and for ~ and 7/ be T x and r> respectively. 
The evolution of the microscopic variables ~ and ~/ is given in the time 
interval from t to t + s such as re << s << r x by 

~(t  + s ; X ( t  + s)) ~--- ~( t  + s ; X ( t ) )  + s ) ( V x ~ ( t  + s ; X ( t ) )  

=-- ~7(s)  + s X  t Vx~~ (26) 

with ~ = 4, ~/. The evolution of the first term on the rhs of Eq. (26) gives the 
relaxation of ~(t) toward local equilibrium and the second term concerns 
the dynamical coupling. The variables ~t~ in Eq. (26) may be obtained as 
follows. In the first approximation we tentatively neglect the contribution 
of the dynamical coupling to the evolution of ~ ( s )  against the local 
relaxation. Then the evolution of ~~ is given by a linear non-Markov 
equation (19,21) : 

d ~ t ( s ) / d s  = az(/)L~ (s) - s  "~z(S ; t)~'t~ (s - s ' )ds '  

+ gz( t + s) + Fz( t + s) (27) 

a ,  - ( U , ( (  ~ , *1;', X ( t ) ) f ; ' ) ( f ~  -1 (28a) 

q'z(s; t) :-- ( gz( t + s) gz( t ) ) ( ~ t 2 )  -1 (28b) 

gz( t  + s) --  exp[(1 - e t ) A t s J ( 1  - Pt)At~t ~ (28c) 

P,A  = ( A ~ t ) ( ~ t 2 )  - 1~, + ( A , 1 7 ) ( , l t 2 )  - 1~17 (28d) 

U ~ o + 8 At = x(~t ,~1, , X ( t ) )  + Uy(~ t ,~ l t~  8~/o 

D ( O 2 0 2 0 ) 
+ 2- 0 - ~  + 2 8~o8~o + ~ (28e) 
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From Eq. (27) we obtain in the steady state 

2~z(t)(ft  ~ + D = 0 (29) 

We assume that N is so large that 

1 ~o2 = ,, - . 7  ( 3 0 )  
I 

By assuming a Gaussian distribution for (~7) and (~?),  we are able to get 

( ~ t  4)  ~--- 3C2(t )  

and 

= ,,o ( t)o  ( t) 

Equation (28a) can be calculated as 

f~x(t) = ~ [4x - 4R - 3 f l x X 2 ( t )  - 3f lxo~,  ( t )  - f l xo~  (t)]  (31a) 

f~y(t) = ~ [4~ - 4R - f l x X 2 ( t )  - f l x o  ~ ( t )  - 3 f l x a f  ( t)]  (3 lb) 

Substituting Eqs. (31a) and (31b) into Eq. (29), we obtain 

[4(x - R )  - 3 f l r X 2 ] o ~  x - 3flKOx ~ - f l x o ~ o f  + 4D = 0 (32a) 

and 

[4(x - R )  - f i x X 2 ] o f  - 3 t i r o l  2 - f l x o ~  + 4D = 0 (32b) 

which immediately result in 

for X ( t )  --- O. 

The synchronization is expected to occur when the steady state giving 
rise to X = 0 becomes unstable. Linear stability analysis around X = 0 
based on Eq. (22) gives the condition for the synchronization as 

~ [ 1 -  ( 3 o ~ +  o~) > 0  (34) 

Substituting Eq. (33) into the inequality (34) we obtain the synchronization 
condition for x > 0, 

R > flD (35) 

where/3 = 4/@ 
Qualitatively speaking, the synchronization occurs only when the mag- 

nitude of the coupling among the elementary oscillators exceeds the ratio 
between the "energy" of thermal fluctuation D and the "energy" of the 



730 Yamaguchi, Kometani, and Shimizu 

mechanical motion, a~/4, in the absence of the coupling. A more detailed 
discussion of the condition (35) will be presented in the last section. 

5. THE TIME EVOLUTION OF THE ORDER PARAMETER 

To obtain a clear picture of the stochastic process of the organization 
of a macroscopic rhythm, let us study the time dependence of the order 
parameter X(t ) .  For the sake of simplicity, we assume the deviations ~ and 
~/from the order parameter X ( t )  are so small that the linearized approxima- 
tion can be utilized in Eqs. (24a) and (24b), 

3fix X2]~ + Fx(t) 
/ 

(36) 

Multiplying both sides of Eqs. (36) by 2~ or 27/, which can be obtained by 
integrating Eqs. (36) with regard to time, and then taking the ensemble 
average of the results, we obtain 

In the presence of the local equilibrium as discussed in the preceding 
section the steady state solutions of Eqs. (37) become 

( '~)  = D / ( ~ X ~  + R - ~ )  

and 

) (,/2) = D ~ + R - x (38) 

These equations denote the explicit time dependence of the internal fluctua- 
tions ~ and ~/upon the order parameter X. The larger the order, the smaller 
the internal fluctuation. In other words, as a macroscopic rhythm is 
organized in a system, internal fluctuations decrease. 

In the following discussions we will use a simple approximation where 
the sample averages o x and ay are replaced by the ensemble averages (~ 2) 
and Q12), respectively. This approximation may be not too bad as long as 
N is large. A closed equation for the order parameter X is obtained by 
substituting Eqs. (38) into Eq. (22). In this treatment, the explicit time 
dependences of o x and oy are neglected because of local equilibrium. 
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Consequently, the non-Markov character to be introduced through the 
explicit time dependence of ox and oy in Eq. (22) disappears and one is left 
with a Markovian equation: 

/ / (  /1} f f = - ~  1 -  3 X 2 - x + R  + 1  T - r + R  X 

fix X3 + G(t) (39) 
8 

Within the limits of small random force G(t), Eq. (39) can be evaluated by 
exact integration or by using the dynamical scaling theory. (2~ However, 
the solution will be too intricate for intuitive understanding. Hereafter we 
will discuss the self-synchronization in simple cases where the nonlinear 
parameter x is so small that the contribution of its second- or higher-order 
terms to the evolution of X are negligibly small. Expanding the rhs of Eq. 
(39) with respect to r and retaining the result up to the first term, we obtain 

= gX - hX 3 + G(t) (40) 

with g = (x/2)(1 - f l D / R )  and h = f ix/& In the absence of the nonlinear- 
ity in the oscillators, i.e., x = 0, the order parameter X does not grow but 
fluctuates around zero due to the random force G(t), In case of x > 0, there 
appears a systematic force, g X -  hX 3, which gives X a time evolution to 
the steady state value, +_ (g /h )  ~/2 or 0. Schematically this evolution can be 
regarded as the motion of a Brownian particle on the potential V(X) 
= - � 8 9 1 8 8  4 as shown in Fig. 1. As is clearly seen, the mutual 
entrainment of the oscillators is achieved when g > 0, or when the follow- 
ing condition holds: 

R > ,SD (41) 

V 

t x 

Fig. 1. A schematic representation of the macroscopic state of the system with an effective 
potential V ( X )  = - �89 2 + �88 4 for the order parameter X. The symbols a and b, respec- 
tively stand for the cases of g < 0 and g > 0. In the case of b, steady states of the system are 
found at X = _+ X s. 
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which is in agreement with the condition (35). The presence of a threshold 
given by (41) means that the state of the elementary oscillators has two 
phases, the synchronized and asynchronized phases. 

When R >> flD, the coefficient g in the Langevin equation (40) be- 
comes ~/2 and the equation is equivalent to that of a single rotating Van 
der Pol oscillator. The presence of flD, the effect of the external fluctuation 
in g, decreases the rate of the self-organization on a macroscopic rhythm by 
reducing the "growth rate" g by f lxD/2R from that of the single oscillator. 
This is also the case for either Eq. (22) or Eq. (39) in which the nonlinearity 
is fully retained. 

According to Suzuki's dynamical scaling theory, the motion of the 
above Brownian particle in the case g > 0 is denoted in terms of the time 
dependence of Z = (X2), of which the motion can be derived from Eq. 
(40): 

2 = 2gZ - 2hZ 2 + D / N  (42) 

The time dependence of the variable Z can be represented in the scaling 
form as 

r (43) Z = Z s l ~ _  r 

where Zs denotes the steady state value of Z and r is given by the nonlinear 
transformation of the time: 

Z~ = g /h  + O ( D / N )  (44) 

and 

r = ( g / h ) ( D / 2 N g  + Zo)e 2g' (45) 

In Eq. (45) Z 0 stands for the initial value of Z. The scaling form (43) is 
asymptotically correct where both the fluctuation G(t) and the initial value 
Z o are small enough. Equation (45) predicts that Z will show sigmoidal 
growth. 

To express the time needed for the temporal organization, we define an 
onset time t o which is the period from Z = Z 0 to Z = Z J 2 .  The time t o is 
easily given by Eqs. (43) and (45) as 

= -  1 ln[ h ( ~ g N g + Z o  ) ] to (46) 

These results will be compared with those of computer experiments in the 
next section. 

To see the influence of the external fluctuation G(t) upon the process 
of the self-synchronization, we derive the probability distribution function 
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i 

-X S 0 

a 

Xs 

Fig. 2. A representation of the process of the self-synchronization by means of the probabil- 
ity distribution function P(X; r'). A disordered state a varies to ordered state d in the order of 
a, b, c, and d. This is essentially a replot of a figure in Ref. 20. 

P~c for X. By use of the scaling theory, one is able to find 

, 1 1 - X 2 -3/2exp ) - 

with 

(47) 

) h + Z 0 e 2gt g (48) 

When the initial distribution of X has a sharp peak at X = 0, namely, when 
the microscopic oscillators are completely out of phase at t = 0, the initial 
peak gradually decreases in the following time and is decomposed into a 
pair of peaks symmetrically. At the final stage, the distribution of X 
concentrates around X = X, and - X~, as shown in Fig. 2. 

6. C O M P U T E R  E X P E R I M E N T S  

To check the validity of the above results, they will be compared with 
those obtained by computer experiments. Taking to o = 1.0, e = 0.1, fl = 1.0, 
and K = 0.5 in Eq. (1), the elementary oscillation has the amplitude a 0 = 2.0 
and the period T = 2rr in the absence of the interaction and the fluctuation. 
We fix the number  of the elementary oscillators to N = 50 and vary only R 
and D. In the numerical integration in the following computer experiments 
we used the Runge-Kut t a -Gi l l  method with a system M-200H in the 
Tokyo University Computer  Center. The random f o r c e r ( t )  is introduced in 
the form of the Wiener process (22) with the random number  generated by 
the program library in the computer center. 
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x 2 

i 

0 100 200 t 

Fig. 3. Three typical cases of the self-synchronization appearing in a system of 50 Van der 
Pol oscillators with 6% = 1.0, c = 0.1, fl = 1.0, and ~ = 0.5 with R = 2.0. The diffusion constant 
D due to external fluctuations is 0, l, and 3 for plots A, B, and C, respectively. The ordinate 
represents the square of the order parameter, X 1, with a scale where the amplitude of the 
noninteracting oscillator is given by 2. The abscissa denotes the time in the scale where the 
period of the noninteracting oscillator is 2~r. The base line for plots B and C is shifted 
downward by 1 and 2, respectively. 

Three typical cases are demonstrated in Fig. 3 for the time course of 
X2(t). In  the initial state, the 50 oscillators are placed on the limit cycle 
with a uniform phase distribution. Dissipative interactions are introduced 
to the elementary oscillators at the time t = 0. Then  the time evolution of 
X 2 is observed using the equat ion X 2 = ( ~ x i / N )  2 + (~.,yi/N) 2, where x i 
and Yi are defined on the space fixed coordinate,  for the sake of conve- 
nience. This definition of X 2 is coincident with that in Section 3 when the 
macroscopic  oscillation has the same angular  frequency % as that of the 
rotating coordinate. This condit ion has been fairly well satisfied in the 
region D / R  < 1 in our computer  experiments. In  Fig. 3, as predicted by 
Eq. (43), plot  A for X 2 has a sigmoidal form versus time in the absence of 
external fluctuation and the steady state value of X is found a round  4 
superimposed with a fine rapid oscillation. This rapid oscillation is caused 
by the fact that  the Van  der Pol oscillation is unharmonic  and its ampli tude 
repeatedly deviates by the factor e f rom that  of the corresponding harmonic  
oscillation. Weak  fluctuations of D / R  = 1.0/2.0 are in t roduced externally 
to the interacting oscillators in the case of plot B. The  fluctuations mark-  
edly disturb the growth of the order parameter  so that X 2 fluctuates with a 
long time scale of the order of more  than 102. Plot C denotes X 2 in the case 
that the synchronizat ion condit ion is broken ( D / R  = 3.0/2.0). In  this case 
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X 2 remains in the neighborhood of 0 and no macroscopic oscillation 
appears in the system. 

Figure 4 demonstrates the time dependence of the variance of the 
phases in plot a and that of the mean value of the amplitudes in plot b. 
Figures 4-1-4-3, respectively, correspond to the time courses exhibited by 
A - C  in Fig. 3. In Fig. 4-1, the variance of the phases rapidly decreases at 
an early stage and simultaneously the mean value of the amplitudes also 
decreases. In other words, the phase coherence is attained first, and then in 
the later stage only the mean amplitude changes gradually and recovers the 

J 

1 0 0  200 
1 t 

1 O0 200 
2 t 

b 

i i i 

100 200 
3 t 

Fig. 4. The time dependence of the variance of the phases (plot a) and of the mean of the 
amplitudes (plot b) in the process of the self-synchronization of 50 Van der Pol oscillators. 
Figures 4-1, 4-2, and 4-3, respectively, correspond to the cases of A, B, and C in Fig. 3. The 
ordinate denotes the variance of the phases and the mean of the amplitudes for plots a and b, 
respectively. The abscissa is given as in Fig. 3. 
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original value of 2 for the elementary oscillation. This two-step change will 
be the general character of the self-synchronization caused by dissipative 
interactions. In the second step, the behavior of the order parameter  
coincides with that of the mean square of the amplitudes, since the 50 
elementary oscillators are in phase in this stage. In Fig. 4-2 the variance of 
the phases (a) slowly decreases and remains at about 0.1 in the steady state. 
This deviation of phases from the complete synchronization gives the 
elementary oscillators a force to diminish the mean amplitude (b) through 
the dissipative interactions. When no macroscopic oscillation is observed as 
shown in Fig. 3C, the variance of the phases is found to remain at the 
initial level as exhibited in Fig. 4-3. The amplitudes have the mean value at 
1.6 and the variance of their phases is about  0.6. In this case the phase 
coherence is hardly attained among the elementary oscillators. We see the 
state X--~ 0 shown in Fig. 3C is derived from the disappearance of the 
phase coherency among elementary oscillators. 

Figures 5 and 6 show the steady state value Z s of ( X  2) versus the 
magnitude of the dissipative interaction and versus the size of the external 
fluctuation, respectively. Theoretical values of Zs predicted by Eq. (44) are 

4 

Zs 

3 

f/ 

! 

1 2 3 4 5 R 

Fig. 5. The dependence of the ensemble average Z s of the steady state values of X 2 on the 
magnitude of the coupling constant R of dissipative interaction, when D = 1 with fl = 1. The 
solid line shows the theoretical values predicted by Eq. (44) for N = 50 and the broken one for 
N = o0. The open circles indicate the values obtained in a computer experiment for N = 50 
and the vertical lines denote the standard deviation. 
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0 I 2 
I I 

3 4 
D 

Fig. 6. The dependence of the ensemble average Z s of the steady state values of X 2 on the 
magnitude of the diffusion constant D with fl = 1 when the magnitude of the interaction is 
given as R = 2. The theoretical values from Eq. (44) are indicated by the solid line for N = 50 
and by the broken line for N = ~. The open circles denote the experimental values for N = 50 
and the vertical lines show the standard deviation. 

plotted by the solid line (N = 50) and by the broken line (N = oo). The 
difference of Z s between the cases of N = 50 and oo is caused by the 
existence of the random force G(t)  in Eq. (40). The open circle denotes the 
average of X2( t )  over the time period 2500 in the steady state and the 
vertical line its standard deviation. These experimental results have been 
proved to be almost the same regardless of the initial condition, in phase or 
out of phase, and of the sample paths. In computer experiments, the large 
time scale fluctuations of X 2 are apparent as shown by the standard 
deviation in these figures. In the region D / R  > 1, Z s is found to be nearly 
zero. A reasonable agreement is demonstrated between the theory and 
computer experiments. 

From the above figures we recognize two phases in the state of the 
correlation among the elementary oscillators. One is a disordered or tempo- 
rally disorganized phase where the self-synchronization has failed. The 
other is an ordered or temporally organized phase where the elementary 
oscillators are mutually entrained. The transition between the two phases is 
a kind of second or continuous phase transition as shown in Figs. 5 and 6. 
The critical slowing down which is generally observed at the critical 
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condition in a phase transition has not clearly been proved because of the 
large time scale fluctuation in the steady state in our computer experiments. 

The onset time t o of the self-synchronization is compared between the 
theory and the computer experiments in Figs. 7 and 8, where the depen- 
dences of t o on R and on D, respectively, are shown. Since Eq. (46) predicts 
t o with the time scale ~-, to be a result of the multi-time-scale method, the 
plot is the value of t o given by Eq. (46) divided by d'ri/dt = e. In computer 
experiments, we determine t o for convenience as follows: first, the time 
when X 2 initially arrives at half of the Z s theoretically predicted is obtained 
for a sample path of X 2 and then the values obtained in such a way are 
averaged over four examples with different paths of fluctuations and with 
the same initial condition mentioned in the explanation of Fig. 3.  This 
averaged result is plotted in Figs. 7 and 8 by open circles and the vertical 
lines show the standard deviation among the four examples. This rough 
estimation of t o in computer simulations shows us the reasonable agreement 
with the theoretical value qualitatively and quantitatively. 

t o 

100 

50 

f 
r { I I 

2 3 4 5 
R 

Fig. 7. The dependence of the onset time t o on the magnitude of coupling constant R for 
D = 1 with t3 = 1. The solid line indicates the theoretical values for N = 50 predicted from Eq. 
(46). The vertical broken line stands for the threshold condition for the self-synchronization. 
The open circles indicate t o obtained in a computer experiment for N = 50 with the standard 
deviation denoted by vertical lines. 
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I I 

0 1 
D 

Fig. 8. The dependence of the onset time t o on the magnitude of the diffusion constant for 
the external fluctuation with R = 2 and fl = 1. The solid line shows the theoretical values from 
Eq. (46) for N = 50. A computer experiment for N = 50 gave the data indicated by the open 
circles with the standard deviation indicated by vertical lines. The vertical broken line 
indicates the threshold condition for the self-synchronization. 

7. D I S C U S S I O N  A N D  C O N C L U S I O N  

Two different  app roaches  are  p resen ted  in Sections 4 and  5 for  the 
der iva t ion  of the synchron iza t ion  condi t ion ,  R > ill) for ~ > 0. These  
t rea tments  were based  on  two c o m m o n  assumpt ions :  the presence of a 
local  equi l ib r ium and  the small  non l inea r i ty  in the e l emen ta ry  oscil lat ion.  
The  former  a s sumpt ion  requi red  r < R. Because of the la t ter  assumpt ion ,  a 
G a u s s i a n  d is t r ibu t ion  was used  for ~ a n d  77 in the ca lcula t ion  of o x and  oy in 
Sect ion 4. This  is a sympto t i ca l ly  correct  in the l imit  of small  nonl inear i ty .  
In  Sect ion 5, the t ime evolut ion  of the o rde r  p a r a m e t e r  X is t rea ted  by  an  
equat ion,  Eq. (40), where terms higher  than  the first o rder  with respect  to 
a re  neglected.  In  short,  our  synchron iza t ion  condi t ion  is valid,  p rov ided  
that  the e l emen ta ry  osci l la t ions have  a small  nonl inear i ty .  This  is the reason  
why  we took ~ = 0.5 in compu te r  exper iments .  However ,  the a synchronous  
phase  has  been  recognized  as well as the synchronized  one when  the value  
of  K is of the o rde r  of 1. The  t ransi t ion be tween  two phases  is a k ind  of 
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second-order phase transition described by a Landau-type equation. A 
macroscopic oscillation appears as a Hopf-type bifurcation. 

We have so far discussed self-synchronizations caused by dissipative 
interactions. In the case of the mechanical oscillation, such an interaction is 
caused by the friction. The electrical coupling between cardiac cells can be 
described by a set of equations which can be reduced to those similar to 
Eqs. (16). (23) That is, the coupling between excitable cells is of a dissipative 
type. It is of interest to qualitatively compare such synchronizations with 
the cases with nondissipative interactions which can be represented as 
e(R/N)~,j(xj - -  x i )  in the equation of motion, Eq. (1). 

The multi-time-scale method applied to Eq. (1), after replacing the 
dissipative interaction term by nondissipative one, leads to 

] Yci= X.~x i 1-- (x2 + y?) ---~ X(yj--yi)+ gxi(t ) 
s (49) 

2, = y ,  1 - ( x f  + + 2 (xj  - x,) + gyi( t)  
J 

The time dependences of x i and Yi are influenced by the differences in {yj} 
and in {xj}, respectively. Equations (49) can be further rewritten in terms 
of amplitude a i and phase $i by utilizing Eqs. (A.1) in the Appendix as 

( -~ ) R sin(rb-eOi)+ D +Fa,(t) (50a) d i . = ~ a  i 1 -  a2i +-~A 

+i = R[I_ A__ cos((1)- @/)ai ]+ F~,,(t___.__))ai (50b) 

The interaction term (/CA/2)sin(alp - @i)  in Eq. (50a) causes a decrease or 
increase in the amplitude a i according to the size of ~b-  r while the 
amplitude is never increased in the case of dissipative interactions as shown 
in the Appendix. Equation (50b) shows that the stable steady state is not 
found as q5 = +i, with the first approximation that as = A. Equations (50a) 
and (50b) show that the system with the nondissipative coupling does not 
give rise to so simple a synchronized state as the one in the dissipative 
coupling. This is consistent with the results of computer simulations by 
Pavlidis where quasiperiodic oscillations and randomlike variations of 
periods are observed. (24) 

Equations of motion for coupled nonlinear oscillators can be written 
simply both for dissipative and nondissipative interactions as 

B W , -  ClWil2w  + r (wj - W,) + Gi(t) (51) 
J 

in the complex space IV,. ---- x i + iy i. In Eq. (51) the coefficients B and C are 
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real quantities and the real and imaginary parts of F denote the dissipative 
and nondissipative interactions, respectively. As a causal dynamics, the 
stability of the synchronization was studied by Aizawa in the absence of the 
random fluctuating forces by using this type of equation. (25) Chemical 
reaction diffusion systems in the neighborhood of a soft and hard mode 
instability are able to be discussed with equations similar to Eq. (5 1). (26) In 
this case, the difference between the diffusion constants for two chemical 
substances gives the imaginary part of F. 

Note  A d d e d  in Manuscript .  After writing this paper, we received a 
communication from Professor Y. Kuramoto of the Kyoto University and 
learned that he also showed the existence of the phase transition in 
populations of coupled limit cycle oscillators in the presence of external 
fluctuations. The critical condition obtained by his phenomenological anal- 
ysis bears a similarity to our result. (27) 
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APPENDIX 

Let us derive the Langevin equations for the phase (~i} and tile 
amplitude {ai} from the Fokker-Planck equation for {x i}  and (Y i} .  These 
variables relate to each other as follows: 

X i "-~ a i COS ~b i 

vl / Oao = yi = - a i sinai (A.1) 

Since dx  i dy~ = a ida i deo i, two distribution functions for these variables have 
the relation 

N 

PC(ai}, (+i)) = H aiPC{xi),  (Yi ) )  
i=1 

and then, corresponding Fokker-Planck operators are linked as follows: 

N N 

n l ( { a i }  , ((/)i}) = H aiH1 H a,-'  ( A . 2 )  
i = l  i=1 
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The  F o k k e r - P l a n c k  opera tor  for (ai} and (@i} can  be explicitly calculated 
by  using Eqs. (A.1), (A.2), and  (15) 

(  o, a(l a t (@,})  = 

~ O 2 0 1 + 1 3 2 ) 

+ 0a/  O a, a, a-7 0@--7 

~o g [ 8 ai ] 
2 N  ~j -~aiai [ aj cOS(@j - @i) - 

The  Langevin  equations are given by  Eq. (A.3) 

d i = ~ a i ( l -  -~a~)+ ~D + 2R[A cos((b- @i)- ai]+ Fai(t ) 

where 

and  

@i = ~ A  s in(~  - @i) + 1 F~,i(t ) 

E x i /N =-  A cos qb, E ] i / N = -  - A sin 

(A.4) 

(A.5) 

(A.6) 

<Fbi(t)) = O, <Fbi(t)Fb,j(t')) = DSijSbb,8(t -- t') (A.7) 

with b = a, @. It  should be noted that  Eq. (A.3) is described with the t ime 
scale z I whereas Eqs. (A.4), (A.5) with the t ime scale ~0"ri. 
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